The generator matrix

 1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  X  2  X X^2  X  X  0  X X^2+2  X X^2  X  X  X  X  X  1  1
 0  X  0 X^2+X+2  0 X^2+X  0 X+2 X^2 X^2+X X^2+2  X X^2 X^2+X+2 X^2+2 X+2  2 X^2+X  2  X  2 X^2+X+2  2 X+2 X^2+2 X^2+X+2 X^2 X+2 X^2+2 X^2+X X^2  X X^2+X  X X+2  X  2 X^2+X+2  X  X  X  0  2 X^2 X^2+2 X^2  0  2  2 X^2+2
 0  0 X^2+2 X^2  2 X^2+2 X^2  2 X^2  0  0 X^2 X^2+2  2  2 X^2+2  2  2 X^2 X^2+2  0  0 X^2+2 X^2 X^2+2 X^2+2  2  0 X^2 X^2  0  2  0 X^2  2 X^2+2 X^2 X^2  2 X^2  0 X^2 X^2+2 X^2  0 X^2+2  0  2 X^2  0

generates a code of length 50 over Z4[X]/(X^3+2,2X) who�s minimum homogenous weight is 48.

Homogenous weight enumerator: w(x)=1x^0+111x^48+128x^49+116x^50+32x^51+67x^52+32x^53+12x^54+12x^56+1x^68

The gray image is a code over GF(2) with n=400, k=9 and d=192.
This code was found by Heurico 1.16 in 0.094 seconds.